Membrane Allostery and Unique Hydrophobic Sites Promote Enzyme Substrate Specificity
نویسندگان
چکیده
We demonstrate that lipidomics coupled with molecular dynamics reveal unique phospholipase A2 specificity toward membrane phospholipid substrates. We discovered unexpected headgroup and acyl-chain specificity for three major human phospholipases A2. The differences between each enzyme's specificity, coupled with molecular dynamics-based structural and binding studies, revealed unique binding sites and interfacial surface binding moieties for each enzyme that explain the observed specificity at a hitherto inaccessible structural level. Surprisingly, we discovered that a unique hydrophobic binding site for the cleaved fatty acid dominates each enzyme's specificity rather than its catalytic residues and polar headgroup binding site. Molecular dynamics simulations revealed the optimal phospholipid binding mode leading to a detailed understanding of the preference of cytosolic phospholipase A2 for cleavage of proinflammatory arachidonic acid, calcium-independent phospholipase A2, which is involved in membrane remodeling for cleavage of linoleic acid and for antibacterial secreted phospholipase A2 favoring linoleic acid, saturated fatty acids, and phosphatidylglycerol.
منابع مشابه
Lipid chain selectivity by outer membrane phospholipase A.
Outer membrane phospholipase A (OMPLA) is a unique, integral membrane enzyme found in Gram-negative bacteria and is an important virulence factor for pathogens such as Helicobacter pylori. This broad-specificity lipase degrades a variety of lipid substrates, and it plays a direct role in adjusting the composition and permeability of bacterial membranes under conditions of stress. Interestingly,...
متن کاملMembrane penetration of cytosolic phospholipase A2 is necessary for its interfacial catalysis and arachidonate specificity.
To determine the mechanism of calcium-dependent membrane binding of cytosolic phospholipase A2 (cPLA2), we measured the interactions of cPLA2 with phospholipid monolayers and polymerizable mixed liposomes containing various phospholipids. In the presence of calcium, cPLA2 showed much higher penetrating power than secretory human pancreatic PLA2 toward anionic and electrically neutral phospholip...
متن کاملRole of N-terminal hydrophobic region in modulating the subcellular localization and enzyme activity of the bisphosphate nucleotidase from Debaryomyces hansenii.
3', 5'-Bisphosphate nucleotidase is a ubiquitous enzyme that converts 3'-phosphoadenosine-5'-phosphate to adenosine-5'-phosphate and inorganic phosphate. These enzymes are highly sensitive to sodium and lithium and, thus, perform a crucial rate-limiting metabolic step during salt stress in yeast. Recently, we have identified a bisphosphate nucleotidase gene (DHAL2) from the halotolerant yeast D...
متن کاملCrystal structure of earthworm fibrinolytic enzyme component a: revealing the structural determinants of its dual fibrinolytic activity.
Earthworm fibrinolytic enzyme component A (EFEa) from Eisenia fetida is a strong fibrinolytic enzyme that not only directly degrades fibrin, but also activates plasminogen. Proteolytic assays further revealed that it cleaved behind various P1 residue types. The crystal structure of EFEa was determined using the MIR method and refined to 2.3A resolution. The enzyme, showing the overall polypepti...
متن کاملA reinvestigation of the substrate specificity of pig kidney diamine oxidase.
1. The substrate specificity of pig kidney diamine oxidase was reinvestigated with a purer enzyme preparation than has previously been used for this purpose. 2. All substrates were extensively purified before use, and methods of preparation or sources are given, together with R(F) values. 3. The substrate specificity determined differed somewhat from that reported by previous workers and, in ad...
متن کامل